Fitness Tracker: Hack In Progress

Axelle Apvrille - FortiGuard Labs, Fortinet

Hack in Paris, June 2015
Outline

Background on Wearables
Background on Fitbit Flex
Architecture
Hacking Tools
Reverse engineering
Fun with the tracker
Conclusion
Wearables

Smart watch

Wearable camera
Wearables

- Smart watch
- Wearable camera
- Wristbands
Wearables

- Smart watch
- Wearable camera
- Wristbands
- Skin exposure detector

Drowsing detector
Don't drowse during my talk !!!
Wearables

- Smart watch
- Wearable camera
- Wristbands
- Skin exposure detector
- Music beany

Drowsing detector
Don't drowse during my talk !!!
Wearables

- Smart watch
- Wearable camera
- Wristbands
- Skin exposure detector
- Music beany
- Connected T-shirt

Drowsing detector

Don't drowse during my talk !!!
Wearables

- **Smart watch**
- **Wearable camera**
- **Skin exposure detector**
- **wristbands**
- **Music beany**
- **Connected T-shirt**
- **Augmented reality glasses**

Drowsing detector

Don't drowse during my talk !!!
Wearables

- Smart watch
- Wearable camera
- Wristbands
- Skin exposure detector
- Music beany
- Connected T-shirt
- Augmented reality glasses
- Connected shoes

Drowsing detector
Don't drowse during my talk !!!
Wearables

- Smart watch
- Wearable camera
- Wristbands
- Skin exposure detector
- Music beany
- Connected T-shirt
- Augmented reality glasses
- Smart bra
- Connected shoes

And many others: smart helmets, smart pants, smart socks

Drowsing detector

Don't drowse during my talk !!!
Meet Fitbit Flex

- ST Microelectronics 32L151C6
- Nordic Semiconductor nRF8001 for Bluetooth Low Energy v4.0
- ST Microelectronics LIS2DH tri-axial accelerometer
- TI BQ24040 battery Li-Pol charger
- **No altimeter, no GPS** on Flex. Only on Charge or Surge.
How does it work? (reverse engineered)

Distance, calories, very active min

distance = walking_stride * walking_steps

Calories: based on BMR

Sleep efficiency

100 * (time_asleep/(asleep + time_restless + time_awoken_during_sleep))
Prior issues: default privacy settings of user profiles
Wait, how can the Fitbit Flex track sexual activity?!

There’s only an accelerometer!
How does it the tracker know what I’m doing?
It does not. You enter it manually on the website.

List of activities

- Sexual activity - vigorous effort - 105 calories per hour
- Cooking Indian bread on an outside stove - 211 calories per hour
- Vacuuming - 246 calories per hour
- Horse grooming - 422 calories

Those precise categories no longer exist (add manually)
The issue is fixed

1 result (0.28 seconds)

Activity Directory - Fitbit
www.fitbit.com/fitness/directory/s
Sexual Activity. This is a fake description of the activity which is quite long so it does not fit into the box and the excess is cut off. This is a fake description of the ...

Quick fix the next day
Prevent access to user profiles by search engines
+ erased from Google, Yahoo and Bing
Other prior issues:

- **Clear text login information.** In HTTP POST data.
- **No consistency check, no authentication, no encryption in sync protocol.**

Set dummy values on tracker or account - yours or someone’s else. Earn undeserved awards and profit.

Good news

No longer work - I’ve checked ;)}
Known (but not so nasty) issues that still work

Images courtesy of Rahman et al. *Fit and Vulnerable* - 2013

- **Abusing physical sensors.** Shaking firmly towards the ground. Or attach to a rope. Or to a car wheel.

Still works

I tested: 50 spins is approx 40 steps.
Known (but not so nasty) issues that still work

Bluetooth tracking:
- LightBlue on iOS, Bluetooth Finder on Android.
- **Blueberry sniffer** (Raspberry Pi based).

Used to find lost devices

Found my FitBit ★★★★★

by OMG — it works!

Had my Fitbit for only 2 days. Not yet top of mind to remember where I put it. Searched for 3 hours in my house. I knew it was at home because my iPhone was syncing with it in various parts of the house. Could not narrow it down enough until I used this app. It was in my walk-in closet, but where? Looked through laundry basket, shoes, the clothes I wore last. It was attached to the... More
New Fitbit trackers have been significantly locked up:

- If Fitbit servers are down... your trackers are useless
 - You can’t read your own walking or running steps
 - You can’t set an alarm
 - You can’t sync...
- No support besides Mac and Windows
- What are the trackers transmitting about us?
- Should we become concerned by the possibility of trackers getting infected?
Outline

Background on Wearables

Background on Fitbit Flex

Architecture

Hacking Tools

Reverse engineering

Fun with the tracker

Conclusion
Proprietary!

No technical user/ developer/ contributor documentation
Everything has to be reverse engineered

What do we have to start with?

- **Product Manual**: high level user manual
- **Ben Allard**’s Python utility to sync Flex (Galileo)
- A few (incomplete) notes: Sam Marshall, RAThomas
- My choice: **software** analysis only - ”black box analysis”

This is ”hack in progress”: still much work to do.
Feel free to join.
Actors

- **BTLE**
- **HTTPS**
- **Fitbit Servers**

- **EndPoint for Tracker**
- **EndPoint for Dongle**

- **USB**
- **Hacker’s Host**

Data is encrypted on the tracker, decrypted on Fitbit Servers. Dongle does not encrypt/decrypt.

Hack in Paris 2015 - A. Apvrille
Actors

- Fitbit Servers
- Hacker’s Host
- EndPoint for Tracker
- EndPoint for Dongle

BTLE

HTTPS

Data
Encrypted Data
Encapsulated in XML
Decrypted Data
Encryption

Data is encrypted on the tracker
Decrypted on Fitbit Servers
Dongle does not encrypt/decrypt

Hack in Paris 2015 - A. Apvrille
Actors

Data

BTLE

Endpoint for Tracker

USB

Endpoint for Dongle

Hacker’s Host

HTTPS

Fitbit Servers

Encryption

Data is encrypted on the tracker
Decrypted on Fitbit Servers
Dongle does not encrypt/decrypt
Actors

- **Encrypted Data**
 - BTLE
 - EndPoint for Tracker
 - USB
 - Hacker’s Host
 - EndPoint for Dongle
 - HTTPS
 - Fitbit Servers

Encryption

Data is encrypted on the **tracker**
Decrypted on Fitbit Servers
Dongle does not encrypt/decrypt
Actors

- **Encrypted Data** → **Encapsulated in XML**

 BTLE

 USB

 HTTPS

 Fitbit Servers

 EndPoint for Tracker → **EndPoint for Dongle**

 Hacker’s Host

Encryption

- Data is encrypted on the **tracker**
- Decrypted on Fitbit Servers
- **Dongle does not encrypt/decrypt**
Encryption

Data is encrypted on the **tracker**
Decrypted on Fitbit Servers
Dongle does not encrypt/decrypt
Current Status

Reversed

- 16 dongle messages
- 24 tracker messages
- XML communication between client and server

What we don't have

Encryption algorithm used between tracker and server
Current Status

Reversed
- 16 dongle messages
- 24 tracker messages
- XML communication between client and server

What we don’t have
Encryption algorithm used between tracker and server
Linux tools: unclaiming the device

- USB HID claims the dongle (lsusb)
- You need to **unclaim** it:

```python
import usb.core
import usb.util
import sys

idVendor=0x2687
idProduct=0xfb01
dev = usb.core.find(idVendor=idVendor, idProduct=idProduct)
for interface in range(0,2):
    usb.util.release_interface(dev, interface)
```
Linux tools: Galileo

https://bitbucket.org/benallard/galileo
Python utility to synchronize the tracker

./run --no-upload --dump --force --no-https-only -d

Small interactive mode

./run interactive
> c ; d ; l ; tx 1 ; al; => c0 10 03;
<=
Linux tools: Wireshark + usbmon

```
tshark -r file.pcap -T fields -e usb.capdata
```
Your own Python code

- **Connect device.**

  ```python
  device = usb.core.find(idVendor=0x2687, 
  idProduct=0xfb01)
  ```

- **Send data** to tracker/dongle.

  ```python
  device.write(endpoint, data, timeout)
  ```

- **Read responses** from tracker/dongle. 32 bytes at most.

  ```python
  response = device.read(endpoint, length, timeout)
  ```

- **Exhaust in pipe:** loop on read until USB error occurs (must not be timeout error)

- **Be patient:** some requests are slow. Set correct timeouts.

- **Handle exceptions/errors:** e.g usb.core.USBError
Reverse engineering and fuzzing

- Fuzz all possible **command identifiers** with dummy payload length 0-30
- **Invalid messages** like get bad dump type, or bad toggle pipe

What did we find?

- Many details on packets’ format: command identifier on 7 bits only, error code...
- Unknown commands
- Vulnerabilities (Responsible Disclosure)
Outline

- Background on Wearables
- Background on Fitbit Flex
- Architecture
- Hacking Tools
- Reverse engineering
- Fun with the tracker
- Conclusion
Dongle messages

- Endpoints 0x02 (incoming for dongle), 0x82 (outgoing)
- Variable length

![Diagram of a dongle message structure]

- Padding with zeros may or may not be present.
- Useful Length (UL) does not consider padding.
Known dongle requests (EP 0x02)

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02 01</td>
<td>Get Dongle Information Request</td>
</tr>
<tr>
<td>02 02</td>
<td>Disconnect</td>
</tr>
<tr>
<td>1a 04 PP ..</td>
<td>Start Discovery</td>
</tr>
<tr>
<td>02 05</td>
<td>Cancel Discovery Request</td>
</tr>
<tr>
<td>0b 06 PP ..</td>
<td>Establish Link Request</td>
</tr>
<tr>
<td>02 07</td>
<td>Terminate AirLink Request</td>
</tr>
<tr>
<td>03 08 PP</td>
<td>Toggle Tx Pipe Request</td>
</tr>
<tr>
<td>11 12 PP ..</td>
<td>Establish Link Ex</td>
</tr>
</tbody>
</table>
Known dongle responses (EP 0x82)

<table>
<thead>
<tr>
<th>Format</th>
<th>Padded?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 01 PP ..</td>
<td>✓</td>
<td>Information message</td>
</tr>
<tr>
<td>03 02 PP</td>
<td>✓</td>
<td>Finished Discovering Trackers</td>
</tr>
<tr>
<td>13 03 PP ..</td>
<td>✓</td>
<td>Tracker Discovered</td>
</tr>
<tr>
<td>03 04 PP ..</td>
<td></td>
<td>Establish Link Response</td>
</tr>
<tr>
<td>03 05 PP ..</td>
<td></td>
<td>Link Terminated Response</td>
</tr>
<tr>
<td>08 06 PP ..</td>
<td>✓</td>
<td>Test Air Link Response</td>
</tr>
<tr>
<td>02 07</td>
<td></td>
<td>(Establish Link?) Confirmed</td>
</tr>
<tr>
<td>15 08 PP ..</td>
<td>✓</td>
<td>Dongle Information Response</td>
</tr>
</tbody>
</table>

Hack in Paris 2015 - A. Apvrille
We won’t detail all of them ;)

Drowsing detected ;)
Example of dongle message flow

Host

Get Dongle Info Req

02 = Length of message
01 = Command Id for Get Dongle Info

Dongle

Get Dongle Info Resp

15 08 MAJ MIN...

15 08 MAJ MIN dd dd dd dd
dd dd 74 04 00 02 00 00
ff e7 01 00 02 Zeroes

- Major (1 byte)
- Minor (1 byte)
- Dongle MAC address (6 bytes)
- Remaining seems to be fixed?
Tracker messages

- Endpoints 0x01 (received from tracker), 0x81 (sent to tracker)
- Fixed length
- Padded with zeroes up to 32 bytes
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0 01</td>
<td>Reset Link</td>
</tr>
<tr>
<td>C0 04</td>
<td>Handle secret (clear or display)</td>
</tr>
<tr>
<td>C0 05</td>
<td>Alert user request</td>
</tr>
<tr>
<td>C0 06</td>
<td>Display code (on the tracker)</td>
</tr>
<tr>
<td>C0 09</td>
<td>Echo Request</td>
</tr>
<tr>
<td>C0 0a</td>
<td>Initialize Air Link</td>
</tr>
<tr>
<td>C0 10</td>
<td>Get Dump Request</td>
</tr>
<tr>
<td>C0 24</td>
<td>Start Transmission</td>
</tr>
<tr>
<td>C0 50</td>
<td>Client Challenge</td>
</tr>
<tr>
<td>C0 52</td>
<td>Authentication Response</td>
</tr>
<tr>
<td>C0 01 -- ... 02</td>
<td>Reset Link Response</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>C0 02 -- ... 02</td>
<td>Ack Response</td>
</tr>
<tr>
<td>C0 03 PP ... 04</td>
<td>Error Code Response</td>
</tr>
<tr>
<td>C0 05 -- ... 02</td>
<td>Alert user response</td>
</tr>
<tr>
<td>C0 08 -- ... 02</td>
<td>User Activity</td>
</tr>
<tr>
<td>C0 09 PP ... UL</td>
<td>Echo Response</td>
</tr>
<tr>
<td>C0 0b -- ... 02</td>
<td>Toggle Pipe Response</td>
</tr>
<tr>
<td>C0 12 PP ... 05</td>
<td>First Ack Block Response</td>
</tr>
<tr>
<td>C0 13 PP ... 05</td>
<td>Ack Block Response</td>
</tr>
<tr>
<td>C0 14 PP ... 0c</td>
<td>Air Link Initialized Response</td>
</tr>
<tr>
<td>C0 40 PP ... UL</td>
<td>Single block packet response</td>
</tr>
<tr>
<td>C0 41 PP ... 03</td>
<td>Start of Dump</td>
</tr>
<tr>
<td>C0 42 PP ... 09</td>
<td>End of Dump</td>
</tr>
<tr>
<td>C0 51 PP ... 0e</td>
<td>Tracker Challenge</td>
</tr>
</tbody>
</table>
We’ll detail every each of them

No - I’m joking :)

Let’s only have a look at how to sync (Get Dump)

I’m watching those who drowse ;)

Hack in Paris 2015 - A. Apvrille
We’ll detail every each of them

No - I’m joking :)
Let’s only have a look at how to sync (Get Dump)

I’m watching those who drowse ;}

Hack in Paris 2015 - A. Apvrille
Setting up communication with tracker 1/4

- Disconnect. Clean up current state
- What’s my dongle? Get Dongle Information

Dongle

Tracker(s)

Disconnect

02 02

CancelDiscovery...

Information

TerminateLink...

Information

Get Dongle Info Req

02 01

Major, minor, MAC address...

Get Dongle Info Resp
Communication setup 2/4: discovery

Dongle → Tracker(s)

Start Discovery → 1a 04 ba 56...

StartDiscovery → Information

13 03 TrackerId... → Discovered Tracker

13 03 TrackerId... → Discovered Tracker

03 02 NbOfTrackers... → No more trackers

Cancel Discovery → 02 05

CancelDiscovery → Information
Communication setup 3/4: establish link

Dongle

Establish Link

0B 06 TrackerId Addr SUUID SUUID...

Tracker(s)

20 01 EstablishLink called...

Information

03 04 (Ack)

20 01 GAP_LINK_ESTABLISHED_EVENT...

02 07 (Confirm)
Communication setup 4/4: switch to tracker

Enable (01) Pipe:
Dongle

Tracker(s)

Enable Toggle Pipe

03 08 01

C0 0B

Toggle Pipe Response

Init Air Link:

Request Init Air Link

C0 0A .. max-connection-interval ...

C0 14 LL Major/Minor MAC...

Air Link Initialized
Setting up communication with tracker: Recap

- **Disconnect** - to clean up.
- What’s my dongle? get dongle info.
- **Discover** trackers.
- **Establish link** with a given tracker.
- **Switch** to communication with tracker
- Initialize **air link** with tracker
- Optional: authentication handshake
Get Dump

Dongle

Get Dump Request

Tracker(s)

C0 10 ...

Start Dump Response

C0 41 DumpType

The dump

The dump

C0 42 dump type, dump size...

End Dump Response

If dump holds in a single packet, c0 40 DumpType Dump ... UL
Mega / micro dumps

Different messages

- Megadump (0xd): tracker data sync
- Microdump (0x3): e.g. requesting an update, pairing
- Megadump responses (0x4) (sent by server) e.g. alarms sync
- Microdump responses (0x1) (sent by server) e.g. updates

Megadump format

```
TT 02 00 00 01 00 SS SS SS SS MM MM MM MM MM MM MM
Encrypted ...
```

- **Device type.** Flex 0x28, 0xf4 is Zip, 0x26 is One
- **Sequence counter.** 4 bytes. Little Endian.
- **Model identifier** 6 bytes. Flex: D2 C0 56 2E 15 07 or C9 9B F8 2D 15 07 One: 7B 2E 9F 2B 2D 05 or 7B 16 E4 2A 2A 05 (old).
- Encrypted blob starts at offset 17 (0x11)
Example of megadump

28 02 00 00 01 00 7B 11 00 00 D2 C0 56 2E 15 07 08 5E E7 FC
93 83 83 D1 AE 8C 4D E7 D8 F6 B0 32 F5 41 29 EC D5 26 D5 A9
27 F1 A2 17 26 BC 51 4B 66 FA 08 39 6A 7B 07 60 02 5B CC 05
5D E7 3B F8 8B 33 28 6A EA 3B C7 9E C8 22 D5 A7 EA E4 4D A4
68 AB 09 8E D0 AE A7 04 6D CB 42 CC 8C 73 D1 05 47 C8 CD D3
11 01 E6 A3 EA EC 0F F8 44 43 0A 29 E3 24 4F B7 6A 14 BC 0E
33 DD B5 7C 7D F4 6F 49 84 CC BE B2 DE B6 B6 AA 99 8F F5 26
4A 5B 5C 74 65 16 B0 78 87 2A BA 4E 13 FD 75 C4 3B 8A D2 E5
90 60 67 2D 46 07 7A 4F EE 7E 19 56 29 91 D0 98 B8 FF 2A 5A
88 16 4D 9F 79 56 72 BE CD AC CE F0 B1 D0 46 06 24 CD 82 EB
88 AC D6 2A 3A 72 E1 BE 05 E3 A6 5A C8 E8 85 F6 D1 43 55 A5
A7 13 98 E7 F9 4E B3 87 FF 61 9E 94 94 A3 00 4A AE A9 0D D9
87 3D B2 D8 A4 7C 08 35 D7 50 17 9A 9A F4 4F D4 AD D2 09 5C
51 05 36 AE 61 DB 4A FB 60 9E 1E D9 6D 90 65 D5 1D 79 85 A1
02 B4 91 A2 ED E2 B0 60 60 1A 12 9F EC 91 FD CC 21 AE 80 A9
02 C7 C8 18 E8 3F 8C F7 DC 90 99 32 14 01 00
C0 42 0D B9 03 3B 01 00 00
<?xml version="1.0" encoding="UTF-8" standalone=yes?>
<galileo-client version="2.0">
...
<tracker tracker-id="DEADBEEF0000" type="megadump">
 <data>
 Base 64 dump ...
 </data>
</tracker>
</galileo-client>
Encryption algorithm between tracker and server

What algorithm???
(and what key...)

- Megadump size different at each sync (1836 bytes, 1859(+23), 1877(+18), 1900(+23), 1915(+15)...)
- Differential cryptanalysis: ciphertext-only attack
- Hardware inspection? JTAG?
- Any other idea?

Guessing the algorithm

- STM32L151 does not support AES, only STM32L162...
- Yet, AES (or other) can be used and not accelerated by hardware
- Authenticity: XTEA-CMAC or AES-CMAC (Surge)
- Encryption: XTEA?
Outline

- Background on Wearables
- Background on Fitbit Flex
- Architecture
- Hacking Tools
- Reverse engineering
- Fun with the tracker

Conclusion
Fitbit tracker as source of entropy?

Use authentication packets:
- **Dongle**
- **Tracker(s)**

- **Client Challenge**
 - C0 50 LocalRandom
 - C0 51 TrackerChallenge SeqNum
- **Response to Challenge**
 - C0 52 ComputedMAC ...

- Send a dummy local random (C0 50)
- Wait for tracker’s response: 8-byte challenge
- Never send last message (C0 52)
Example

Getting random bytes

$ python rndflex.py -b 256

e3 57 5a d0 00 14 4a b2
25 d3 91 0b 21 5b c1 e4
fd 9e c9 8d e8 c4 9e 90
76 ba 01 1f ba 56 95 19
...

- Entropy 7.72: ok
- Source code: https://github.com/cryptax/fittools
More fun

There’s still lots to do:

▶ Control the LEDs on the tracker
▶ Make the tracker vibrate
▶ Fuzz the dongle, fuzz the server
▶ Algorithm for dumps?

Contact info

@cryptax or aapvrille (at) fortinet (dot) com